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Abstrors-A theory is presented for the analysis of multielement I. INTRODUCTION
antennas which consist of interconected, conductive structure
elements of electrically small dimensions. The theory is based on the N ANTENNA which consists of a number of intercon-
retarded electromagnetic potentials which permit a diakoptic ap- 'nected conductive structure elements of electrically small
proach to the problem. The antenns Is broken up into its Individual dimensions is shown in Fig. 1. This multielement design was
structure elements. Each element Is assumed to be excited by currents chosen to obtain a broad-band highly efficient antenna of
which are Impressed at its terminals, I.e., junctions with adjacent relatively low profile I l I.
elements (current coupling) and by the electric fields of the currents An analytical treatment of such a composite structure ap-
and charges on all the other elements (field coupling). Both excitations
are treated independently. Each Impressed current produces a pears to be a rather hopeless undertaking. Commonly used
"dominant" current distribution, a characteristic of the element, numerical techniques would require computers with large
which cun he readily computed. Current coupling Is formulated by storage capacity [2]. This paper offers a new approach to
"intrinsic" impdance matrices whkh relate the scaler potentials at the problems of this kind, which holds promise for improved
the terminals of an element, caused by Its dominant current dis- numerical efficiency. According to this approach the com-
triibllo, to the Impressed currents of the element. Field coupling posite structure is diakopted into its individual structure
produces "scatter" currents on all the elements and is formulated by elements. As a simple example Fig. 2 shows a diakopted
a "fleld-coupling" matrix which relates the scalar potentials at the dipole with 6nd capacitor plates. Each structure element is
terminals, caused by field coupling, to the Impressed currents at all characterized by electrical quantities which depend only on

.o the terminals. intrinsic and "flald-couplng" matrices are combined the size and shape of the element, and the assembly is treated
. to form the "complete" Impedance matrix of the diakopted antenna.,: similarly to the interconnection of n-port networks.

a Enforcing coutiNlty of the currents and equality of the scalar
C > potentials at all the latereommectioa between the lemmnts yields a The excitation of each element is ascribed to two causes:

system of linear equations for the junction currents sad the input a) the currents entering the element at its "terminals," i.e.,
-- i impedance of the mtenma. Current coupling dominates field coupling. junctions with adjacent elements or the source, and b) the

Fleld coupling is primarily affected by the dominant current die- fields of the currents and charges on all the other elements.
trihutien of the elements, and in general the scatter currents have The first is referred to as "current coupling" and the second

LL negligible effect n it. Although detailed numerical Investigatiom will as "field coupling." Each excitation is treated separately.be presented in another pper, a simple example Is Included here to Current coupling implies hypothetical sources with a single
demomstrate that the dLkpti theory ylelds very good results even It terminal and the capability of impressing a current onto a

-eamdy mpwlledmamotl s are made, conductor. Although such sources violate the continuity

condition, their assumption is permissible if the electromag-
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Fig. 3. Excitation of single terminal structure element.

with a current I impressed at the terminal, i.e., contact area

VSWR in the center of the plate (Fig. 3). The contact area u is con-
0 Isidered very small compared with the surface of the element.

, _,r_ Excitation by an impressed current cannot be treated with
2 0 Maxwell's equations, because Maxwell's equations imply

00 O00 O0 0U 00 00 00
O0
0

o sources which separate positive and negative charges. In

_1 1 contrast, impressed currents require sources which produce
charges. The regarded electromagnetic potentials do not400 500 600 700 00 900 WOC

--- Mz impose any conditions on the source and therefore, can be
used for our problem.

Figl. 1. Broad-band multielement antenna. If 1(F) is the surface current density and q(F) the surface
charge density due to the impressed current I, the retarded
potentials are

2- 2 I 0
J 2 2 (A (i) f J ')G(i, P) dS (vector potential) (1)

4rS

4 2 3 _
= 4' f q(F')G(i, ,') dS (scalar potential) (2)

47re ,S

Fig. 2. Diakopted capacitively loaded dipole, with

distribution which is uniquely determined by the - .Jmetry exp (-1k 1i-F" )
of the element and the location of the terminal. There are as G(, r') =-7 k = 2ff/>
many dominant current distributions as there are terminals. - r'
The relationship between the scalar potentials at the terminals, where F' is the position vector of the charges and currents
produced by the dominant current distributions, and the on the surface elements dS, and F is the point of observation.
impressed currents is formulated by the "intrinsic impedance The quantities 7() and q(F) must satisfy the following two
matrix" of the element. eq

Field coupling excites scatter currents which are super- aeuations on the surfae of the element outside the contact

imposed on the dominant current distributions. The scalar area a:

potentials at the terminals due to field coupling depend on all -

the impressed currents. Their relationships with the impressed EQ) X d9 = - (iA ) + 1(i)] X d§

currents are formulated by a "field-coupling" matrix. Intrinsic - 0 b condition) (3) j
impedance and "field-coupling" matrices, when combined,

form the "complete impeqance matrix" of the diakopted 7 +,.t
-,~. antenna. This "complete impedance matrix" relates the total J •i(F) +/j0q(F) = 0 (continuity condition). (4)

scalar potentials to all the impressed currents.
Interconnection of the structure elements, which requires The condition that current flux through the boundary curv"?*

equal scalar potentials at the interconnected terminals and C1 of the contact area is the continuation of the imprfse

continuity of the junction currents, is formulated by an inter- current I can be stated as

connection matrix. In this manner a system of linear equa-
tions is obtained which yields the junction currents and the I (i) dl = !, (5)
input impedance of the antenna. 0- () () r=1 5

11. CURRENT COUPLING BETWEEN
STRUCTURE ELEMENTS where (F) is a unit vector tangential to the surface S and

normal to r. The current and charge distributions R(f) and
A4. Structure Elements with One Terminal q(9) due to the impressed current I are termed as "dominant"

Consider one of the capacitor plates of the dipole in Fig. 2 distributions since the currents due to field coupling between
!separated from the other elements and suspended in space the elements are, in general, relatively small. From the bound-
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ary condition (3) Both terms in (11) result from the second term (c rs bam)
in the integrand of (10). The first term in the latepuad

JE() L +) (current term) yields a lowest arder coatribution --W ad,
).()dS=- Iyto(r)+ q )l)J ~dS= 0. therefore, vanithes for t - 0. The first term IjjwC in (11) i

the one to be expected. The second term represents a neptive

(6) resistance of -30 fi for a conductor in free space (q = 120w)
and is not quite obvious. It is brought about by the fact that

The surface of integration S is the surface of the element with an impressed current produces a charge on the element with-
the exclusion of the contact area. Using the relations out a countercharge, in contrast to a Maxwell source. If the

scalar potential is expanded in a power series in w one obtains.~ ~ V -i(o = v()!(F)) - oov / - 7o

= V* (¢(0F0k)) + IO4q() (7) 0(0= - fj G(, )q( ') dS'

and applying Gauss's theorem one obtains from (6)

j / [i). 71;) + 0(o)q( l] ds= 4- S--teTdS+..

The first term of this expansion is the static potential of the
=- "(-( ()d5 charges. The second term which is independent of i repre-

sents a potential, termed "background" potential 00, which

is uniform in space and has no gradient. This means that 0o

-__ (i) i(i) ) dr. (8) does not produce a field. It is this background potential which

r produces the -30 fl term in (11). When the element which
we assumed to be suspended in space is within the antenna

If the contact area o is sufficiently small 0 can be considered structure, the background potential is compensated because
constant within the contact area and on r. Thus with (5), the total of the combined charges on all the other elements is
(8) reduces to equal, but opposite in sign, to the charge of the considered

element. The background potential can be avoided if the re-
S i=tarded scalar potential is redefined as a modified potential 4:jt,. [IF)- a(F) +I Q()q(i)] dS = 41 (9)

S- 0 (,)qr)dS (12)
where 0 is the scalar potential at the contact area. 4 - 4ire

The ratio between b and I can be used to define an im-
pedance which shall be termed "intrinsic impedance." If A where
and 40 are expressed by the current and charge distribution,
the intrinsic impedance of the element is e 1(13

G( , ik= : # . (13)

This modified scalar potential will be used throughout the
* / fpaper. It is preferred over the conventional potential 0 since it

f [A(i) "(F) + 0()q(i)] dS will lead to expressions for the intrinsic impedance which are
2 $ closer to physical expectation.

Use of is legitimate as it does not conflict with Maxwell's
j)W5 (j ., theory. Since V4 = 74, the boundary condition (3) and the

- . 4 fr dominant current distribution derived from it remain un-
changed if 0 is replaced by 4. For a Maxwell system, 0 and

r [; • ) I ( are identical since fq dS extended over the surface of thek " _ I q2 o2 d$'dS (10) entire structure is zero. The intrinsic impedance of a structure

L 12 k2  Q2  Jelement with one terminal becomes

where Q = Ifiw is the total charge on the element. The current Z ;( )qQ)J dS
and charge dirtribution functions Ti! and q/Q are solely deter-
mined by the geometry of the element and the location of the
coupling area. I(4 .,. 1(ir)

When the intrinsic impedance is computed with (10) for -- G(i, ')0

a conductor of any shape, for extremely low frequencies it Or S S
takes the form I ,. q)q( )

= I I114, ) oS s. (14)

* w- 0 wC 4;14
Equation (14) represents a stationary formulation of the

where C is the static capacitance of the element. intrinsic impedance. This means small errors in the dominant
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current distribution have only a second-order effect on the
intrinsic impedance (see Appendix 1).

Excitation by an impressed current I at the terminal can be d
considered equivalent to excitation by an oscillating charge

Fi. 4. Excitation of stuctuse msat by oNh sdks

which is placed above the contact area at a distance d - 0 as
shown in Fig. 4. The charge on the contact are a consists R L
essentially of the image charge --Q. As a result a charge +Q is
distributed over the surface area of the structure element be-

* cause the net charge on the element must be zero. Under cer- C
* tain conditions charge excitation has certain practical advan-

tages in the calculation of the dominant current distribution. _ _,,
The intrinsic impedance Z of an element with one terminal Fig. 5. Low frequency equvala circuit for s temMad IMMctsu

can be represented by a lumped-element circuit as shown in dit.
Fig. 5. For low frequencies, i.e., when the dimensions of the
element are small compared with the wavelength, C and L canT
be considered constant, while R increases proportionately with --' E E.--- t

be.

(6Fig. 6. Smtuctureermet with two termials.Z = + jW L + R(W2). (16)

B. Structure Elements with Two or More Terminals lI" 112 ZW" 112

A structure element with two terminals such as the cylin- ....... .
drical conductors of Fig. 2 has two dominant current distri- Tz"
butions; one associated with each of the independently im- TZ12
pressed terminal currents (Fig. 6). Each dominant current Fig. 7. Equivalent circuit for iw,-terminal structure element.
distribution produces a scalar potential at both contact areas.
If 411 and 421 aresthe potentials at the terminals I and 2 calar potentials, respectively. Equation (20) is derived in
due to I,, and $12, 4122 those due to/.2, then the relationship Appendix 11. The symmetry of the intrinsic-impedance matrix
between the total potentials $1 and $2 at the terminals and Zik = Zk, is evident from (20). In Appendix I it is shown that
the impressed currents can be written as (20) is a stationary representation of the impedance matrix

elements.
$1 = $11 + $l 2 = ZI tI + ZI 212 A lumped-element equivalent circuit for a structure element

with two terminals is shown in Fig. 7. For sufficiently low
2 = $2 1 + $ 2 2 = Z 2 III + Z2 212

•  (17) frequencies the capacitors and inductors can be considered
constant; while the resistors increase with w2.

For a structure element with M terminals the relationship A power series expansion of the right side of(20) in terms
between the terminal potentials and the impressed currents is of jw yields
formulated by an M X M intrinsic-impedance matrix:

4€1 =Z 111U (18) Z/k -jcC + Lik + Rjk(Q2 + "'

where where C is independent of j, k (in the low frequency limit the
charge distribution on a given structure element is independent

(of the location of the contact area). Lik and Ri, are positive
Zik l (i() + ()qj(F)J dS (19) for j - k, but in general are negative for/ * k. In this case the

.lk S term jwoL/k may be counted as a higher order contribution to
the capacitive term I /jC. In Fig. 7 this assumption has been

________ - kv made and an inductor L 12 , which should appear in series with
.- 4[ I l the capacitor C, has been omitted. The resistor R I 2 of this

kcircuit branch may be negative, but its magnitude will be

q()q( ') . smaller than that of the resistors Rt I - R 1 2 andR2 2 - R 2
. ( dS' dS, (20) in the horizontal branches of the circuit.

2 1III. FIELD COUPLING BETWEEN STRUCTURAL

11 jwQ is the impressed current at the jth terminal (with ELEMENTS
I= 0) and Ik = wQk is the impressed current at the kth We now consider a diakopted structure and arbitrary cur-
terminal (with 1, = 0). The quantities 41, qj, AI, 41, and 1k, rents impressed at the terminals. The capacitively loaded
qk, A,, 4, are the corresponding dominant currents distri- dipole of Fig. 2 may serve as an example. The terminals ar
butions, dominant charge distributions, retarded vector, and identified by a superscript i and a subscript k; the superahpt
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refenig to the number of the element and the subscript re- Furthermore, from the boundary conditions (21), using the

ferring to the number of the terminal on the element. If there relations (7) and Gauss's theorem, follows

were no field coupling between the elements, the current dis- r i i (

tributions on all the elements would be the dominant disti- Wit ( (24) an (25 o obtin bc at

but on associated with the impressed currents. are 1awlin sinc impednces6

The field of dominant current distribution is non- for every n including i. (25)Maxwellian ince the associated net charge is nonzero. If a

current r is impresred at the terminal the non-Maxweian The right side of (25) is zero since for scatter currents the
field of the dominant current and lharge distribution ik ,  rim integral of Gauss's theorem in (5) is zero (see AppendixlIV).

q*1 induces currents on all the other elements. The scatter With (23), (i4), and (25) one obtains the "backscatter"

fiel. t excited by thewe induced currents are Maxwellian, since impedances
!. induced current distributions have no net charge. These

"'lirtorder'" scatter fields excite second-order scatter fields 1.1 $kid(F)

and so on; each higher order having a greatly reduced ampli- Zk,k (F) = '

tude. All these scatter fields when summed up form a multiple- 1k

scatter field which is Maxweilian. The currents and charges ''.2 N

associated with the multiple-scatter field are distributed over = J (6A,/ 64"'

all the surfaces S" (including S) and shall be denoted S' i n ,  "= Ii

Sqk in ; the superscripts and subscripts indicate that they are =

produced by the impressed current iki and located on the + 60k Sqk n)dSn ,  (26)

element n. In calculating 61it and Sqki" the structure ele-

ments are assumed open-circuited at their terminals. Hence which has to be added to the diagonal terms of the intrinsic-

the total flux of the scatter currents through the rim of the impedance matrix Zk ,k', using the notation of this section.

contact areas is zero. Scatter currents do not contribute to the Generalization of (26) to obtain the scatter field contributions

junction currents. to the off-diagonal terms is straightforward and yields

The total field generated by Ik5 (all other terminals open- ,

circuited) satisfies on every element the boundary conditions: Zk,/' I(F) = I(

-I ~I
n = 1,..--, ,....,N (21) 1_ 1_ .8-i+ ,4~ +- + kik))X dS" =0,

where Aa, 0 are the retarded potentials of the dominant 'k'j n=i Sn

current and charge distribution lk , qk ; and SAk , 60k_ are + 6k'6q/n) dSn . (27)

those of the scatter current and charge distributions 61k'in ,

bq5
1i combined. N is the number of elements. For k =(27) transforms into (26).

Since the electric field of i,, qki satisfies the boundary Let us now determine the potential 4)k,m '(F) produced

condition on S, it follows from (21 ) for n i that at the terminal (I) by the current fmie impressed at the terminal

OiiAk + 8 
) X dS =O (01). From the boundary condition (21)

Thus, j[ ( i' + Sm) + (m +,4'). 1'i dS' o,

J I(, wb  ' + V 6k) I k dS 0, (2(28)

= N; k 1, "-',Mi. (22) and

Using the relations (7) and Gauss's theorem one obtains the

"backacatter" potential due to the field interaction of the L iW(Ai ' + Ak') + V( k + 6 4k)] I n dS- 0,

excited element with the other elements: Sn

" = kqk) (23)(29)

where the second equation holds for every n including i. The

The letter F indicates field coupling the first pair of indices potentials 6A' i and 6k' characterize the scatter field which

(ik) refers to the terminal at which 0 is determined, and the would be excited by I 1.
second pair to the terminal of the impressed current which As before, we apply relations (7) and Gauss's theorem, and

products this potential. obtain from (28)
As shown in Appendix Ill

(6,,. ik0 + 6,%'qkd') 
4

&,m
4 ')l" = 1WF !A+ i q k )d $'

( . + S .  (24) •(81' 7k' + 6mqh)dS] (30)
(li + $k81"d(4
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and from (29) of the diakopted Istem and relates the terminal potentials

Mgi

0 J (Ai'',." + j,,'Sq"')dS" *$'(C = ZaI"(C)I

due to current coupling to the M, impressed currents of the
+ (6Aa i • 6 + 5$6qma")dS". (31) elementi.

The sum of the matrices [Z(C)] and [Z(F)], i.e.,

The first term in (30) represents the contribution to the ter-
minal potential $ k,m '(F) from the non-Maxwellian field of [ = IZ(C)] + [Z(F)] (36)

the dominant current and charge distribution im1, qm1 , and the
second term that from the scatter current and charge distri- forms the "complete impedance matrix" of the diakopted

butions aim'", 6qm
n . antenna, which represents the relationship between the total

As shown in Appendix III terminal potentials

M MI

sfSm ' 7k + S = l1 m1I

N f' produced by current and field coupling to all impressed cur-

= J (At'a4,,"+ k2 6qr ")dS". (32) rents. In matrix form

14] -- [Z][I. (37)

Expressing $k "(F) in terms of an impedance

If the matrix elements Zk"',(C) (20) and Zkj (F) (27) are
$A.,m"(F) = Zk m"(F)Jm', (33)added, the resulting elements Zk/ have the same form as

those which pertain to field coupling between different struc-

and using (30), (31), and (32), the field-coupling impedance ture elements (34). In other words (34) can be used as general
between the terminals (') and (,) becomes formulation for all elements of the complete impedance ma-

trix of the diakopted system, and the condition i * I can be

I1 I dropped.

Z 1A1 Sm j t(m l  +" mWlqk)dS' The symmetry of the [Z] matrix, i.e.,

N Zk,m,,' = m"' (38)

- n mfl A m + klqml)dsJ. can be easily verified, by expressing in (34) the vector and

scalar potentials by the current and charge distributions ac-

i * 1. (34) cording to (I) and (12).
Equation (34) represents a stationary formulation of the

Equations (27) and (34) yield the elements of the field-cou- matrix elements of [Z]. This means first-order errors in the

* pling impedance matrix (Z(F)], which relates the scalar poten- current and charge distributions lead to only second-order

tials 4k (F) at the terminals, caused by field coupling, to the errors in the impedances (Appendix 1).
impressed currents: Calculation of the radiation-coupling impedances according

to (27) and (34) requires, in principle, computation of the
[$(F)] =I Z(F)1i, scatter current and charge distributions. However numerical

N NMI results obtained with this theory indicate that coupling by the
F M! V scatter currents is a negligible effect. It has been found that

W T = WPk~m
l' l(

F) coupling by the junction currents prevails over field coupling,

and field coupling by the non-Maxwellian fields (radiated by
the dominant current distribution) dominates over that by

N MI the Maxwellian fields (generated by the scatter currents). In

= Z d Za,mi'l(F)Im "  (35) principle field coupling effects by the scatter currents can be
rIobtained with an iterative procedure, which is not discussed

here.
IV. COMPLETE IMPEDANCE MATRIX OF THE If coupling by the Maxwellian scatter fields is neglected,

DIAKOPTED ANTENNA the formula for the elements of the complete-impedance

The intrinsic-impedance matrices of the individual struc- matrix for the diakopted system reduces to

ture elements can be combined into a diagonal block imped-
ance matrix (Z(C)] by writing the matrix elements Zkj (20) Zk.m*. --- (d

in the form Ztj" (C). The superscripts I identify the terminals -lm
' - 'T d' (39)

k and J as belonging to the element i; the letter C indicates
current coupling. The block matrix (Z(C)j, whose elements This means all the matrix elements can be computed from the

4 40 are zero for i I, is the "current-coupling matrix" dnminant current distribution. It is worth mentioning that

-| I II m m k ,, . .. .. - - . . . . ... . . . . .- * -
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formulation of the antenna problem in terIs of this approx- 2L
imate impedance matrix can also be dei in a more con- 4 2 2 
ventional manner by an application of the m thod of moments ift
(31, [41. For this purpose one would fon ate the electric Z''1-"
field integral equation of the entire (interconnected) antenna -4 11
structure and reduce this equation to a linear system by em- 2 1 , i ,
ploying the Galerkin version of the method of moments,
while choosing the dominant current distributions of the vari- Fg. 8. Thin who dipole treated as diskopted four-element system.
ous structure elements as (subsectional) basis and weight func-
tions. After transformation of the linear system, by applica- relationships are
tion of (7), into a matrix equation between the potentials and
currents at the contact areas, the matrix coefficients are found (4J = [ZJ (11 [diakopted antenna] (40)
to be identical with (39). The choice of the dominant current
distributions as basis functions will alleviate the necessity for J =JZ 'li' [assembled actual antenna (41)
subdividing a given antenna into many small segments. Since
each of these current distributions satisfies the conditioning at various
Zion = 0 at its self-element (and since current coupling domi- Priterconnetins f t acu an Rqrents a) bro
nates) it can be expected that structure elements of compara- interconnections of the actual forei Requirements a), b),
tively large size will already yield accurate results. In other and c) represent Kirchoff's structures
words the accent of the problem is shifted from solving an and can be written as

integral equation for the entire antenna to determination of
the dominant current distributions of its structure elements (11 = [C] (11' (42)
which, in many cases, can be reduced to canonical problems.
Moreover, because of the stationary properties of the matrix (4,1' = I C1 t[4'] (43)
coefficients (39), the dominant current distributions have to
be known only approximately in order to obtain impedance [I' = PiitUJ. (44)
values of good accuracy. The numerical example discussed in
Section VI confirms these predictions. [C) t represents the transpose of [C]. Note that V" denotes

potential differences, i.e., voltages.
V. INTERCONNECTION OF THE STRUCTURE ELEMENTS From (42), (43), and (44) the impedance of the actual

AND INTERCONNECTION MATRIX interconnected structure can be written as

The requirement for the diakopted structure with im- IZV=IC)AzI C). (45)I pressed currents to be identical in performance with the
assembled antenna are as follows. The following example shows how ICJ and [Z]' are obtained.

a) The sum of the impressed currents is zero at every junc- V EXAMPLE
tion between the structure elements. This requirement
assures that the Kirchoff condition of current continuity As an example we apply the diakoptic theory to an ordi-is satisfied and that the field of the assembled antenna nary thin-wire dipole antenna and compare the results with the
is Maxwellian. data available in the literature. To obtain a multielement

b) The scalar potentials at interconnected terminals are structure we cut each wire in half, as shown in Fig. 8, and con-
equal. sider each half as a structure element. The diakopted dipole is

c) The potential difference between the input terminals is thus modeled by two structure elements with one terminal and
equated with the driving voltage of the antenna, two structure elements with two terminals, so that the total

It should be emphasized that the continuity of current at number of terminals is six. The complete impedance matrix
junction needs to be imposed only on the impressed cur- of the diakopted structure [Z] is therefore a 6 X 6 matrix.rents which are in turn e ly o the dominant current However there are only eight different impedances because the

rentsu whichur areent inv turn theme flxe of thadmiankcrrn
distributions through the contact areas. The scatter currents four structure elements have been assumed to be alike.
do not contribute to the terminal currents since they are Using the enumerations of Fig. 8 the matrix equation (37)
Maiwellian and have no net charge. Thus the satisfaction of has the form
boundary conditions (2 1) is consistent with the satisfaction of
terminal condition. $13 3 Z

Imposing these junction conditions the matrix equation

(36) yields a system of linear equations for the unknown junc- fi21 Z I Z° Z 2 Z3 ZS Z6 12
tion currents and the input impedance of the antenna. Using
network theory concepts the reduction of (37) to this linear 2 Z

system of equations by enforcing the junction conditions can "2 Z 4 Z 3 Z1  Zo Z 2 Z3 2
* r be formulated with a connection matrix ICI which reduces $12 Z6 ZS Z 3 Z2 , Z 1 , 2

the number of potentials and currents of the diakopted Ztru

ture to those of the actual structure [5 .The potentil-current :2 Z7 Z6 Z4 Z3 Z 0o

$
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with

Zo =Zl1
33 =2Z211 =,11 =Z2222 =2122 =Z2244

=Z Z12331 =Z2113 =Z 1 2
12 =-Z2121 =Z1224 =Z 2 1

4 2

Z2 =Z211 =Z,2
11

=Z 2 1
2 2 
=Z12

2 2

31=Z 13 =Z112 = I121 12 1 24 2

Z3 -ZI 1 - 12 = Z21 1 1  =Z2212 =222 Z2 2 =Z 2 2
4 2

Z 4  Z1 2
3 2

- 2 1
2 3 =z 1 2

1 4 
=Z2Z241

Z5 = Z2112 =Z1221

Z6 = Z I 1
3 2 

=Z1t23 =Z2214 =Z2241

Z7 =Z1234--Z2143

The darkened portion of the impedance matrix Z is the ample are the same for all the elements, can be approx-
current-coupling matrix Z(C). imated by linear current distributions (uniform charge

The interconnection conditions require distribution).

i 3 = -21 = 1 $13 $ 2 1 = 01 Although the latter approximation is rather crude, one
should expect reasonable results if the wire sections are short

122 =-III = -! $1' 422= VO compared with the wavelength because all the impedance
formulas are stationary expressions. Linear current distribu-

124 _--- 2 = 12 2 4 =$12 = 4 2  tion permits analytic formulations of all the impedances
ZO, Z1, Z2, etc., and numerical calculations with a pocket

where 0, Vo are input current and driving voltage of the calculator (such as HP 25). The results obtained are presented
antenna, in Fig. 9. The curves are plots (from a table by King [61) of

Because of the symmetry of the antenna the real and the imaginary part of the input impedance of a

1- 2;$2 2 - 1. dipole with In (21/p) 5 ass function oftP= ki; 21is the total
2 2length of the dipole and p is the wire radius. The crosses mark

Current and voltage matrix of the interconnected antenna are the values of the input impedance as obtained from (46) with
the above assumptions. For 0 = ki < 0.8 the deviation of the

I,- real part of the input impedance from King's data is less than
[A]' 0 , ]' = . 10 percent, and for' the imaginary part deviation is less than

0 11 percent. From this one can conclude that the linear approx-
imation for the dominant current distribution is adequate if

Thus the interconnection matrix becomes the length of a wire section is <1/15 X. This has been con-
firmed by computer results obtained with each dipole leg

1(2 ) ( 4 diakopted into four equal sections. These results are marked
in Fig. 9 by dots and are in good agreement with King's

12 1 2) (curves) even beyond the second resonance of the antenna.

_ (0) 1 0 1 o I 0 1 1- I o 0 Fig. l0 gives an indication of the convergence of numerical( l -,1 - 1 0 1 -1 results as segmentation of a given antenna increases. A dipole
antenna is assumed with each leg diakopted into N equal parts;
the relative impedance errors I ARIR land IAX/X I are plotted

and the impedance matrix of the assembled antenna is versus the antenna parameters 1 = 2 In (2l/p) for = 2 and

[Z'] 2 (Zo'2i) j (2Z3 -22-2Z4)
(223 '- Z2 -2Z4) (2ZO - 221 -Z5 + 2Z6 -27)

Hence
i =Vo (2Z3 - Z2 - Z4)
2 - (Z,-Za)--(=2(-O 2-- 4 )) (46)

1 0o 2Z, - 2 I -Zs + 2Z 6 -27

* For the numerical calculation of the Impedances the following various N. The impedance errors were determined by compar-
aimplifying assumptions have been made. ison with King's results [61. In general these errors decrease

with increasing N. But the behavior of the curves in the region
a) Coupling by scatter currents is negligible, of smaller X(=10 "" 12) suggests that for any 1. there is an
b) The dominant current distributions, which in this ex- optimum value of N for which the errors are at a minimum,
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.60 + - mq Fig. 11. Comparison of folded dipole admittance calculated wth dia-
*(Z) N-Z .10 koptic theory versus King and Harrison.

-700 4 +Q();

0. .. ture element each, while each vertical member was diakopted

Fig. 9. Comparison of dipole impedance calculated with diakoptic into two sections. For the dominant current distributions on
theory versus King. these sections the sinusoidal approximation was used. Despite

the comparatively large size of the vertical structure elements,

Do* d a 2N pm computed impedance values were found to be in good accu-
os R:,*1%, racy up to and beyond the second resonance.

M--0--a- 9.2 VII. CONCLUSION
06 -46- 4406 N-, The major advantage of the diakoptic theory for multi-
04 element antennas, as discussed in this paper, is that the prob-
03 lem of determining the current distribution on the antenna

02 need not be solved for the structure as a whole but only for
01 the individual structure elements. Excitation of each structure
0 10 0 - 140 1 - 80 200 element is ascribed to the currents at its junction with adjacent

1=20 elements and to the fields of the surface currents on all the
other elements. The current distributions produced by the
junction currents have been termed dominant current distri-

08 Dwe dm, tsd 2 24 .eet butions because they constitute the major portion of the

07 reactofte currents on ile composite antenna structure. The remainder

06 -L-:2 -- 14 2 of the currents are made up by scatter currents which are
o w -N4 produced by field coupling. Field coupling, in first approx-

0-, - 6: imation, is determined by the dominant current distributions;
04 1#- while coupling by the scatter currents in general is negligible.

i 0303 Introduction of impedances for the characterization of struc-020 -ture elements and their interaction permits use of network

_0_--...-__ _ _._.._____ theory concepts for the determination of the junction currents

090100 120 140 60 1s. 200 and the input impedance of the antenna. Formulation of all
a 2th impedances by stationary expressions renders the results

Fig. 10. Difference between Xings reults and dtskoptic theory's insensitive to computational errors in the current distributions.

results. As demonstrated by the example given in the paper, even
rather crude approximations to the dominant current distri-

while a further increase in N would tend to reduce accuracy. butions can yield gooc results.

As one should expect the optimum N increases with 1, i.e., APPENDIX I
as the antenna becomes more slender. The length of the wire
sections can be substantlly increased if their dominant cur- Proof for the Stationary Formulation of the Impedances
rent distributions are approximated by sinusoidal rather than 1) To prove that
linear functions. Fig. I I shows the input admittance of a
folded dipole. The solid curves were taken from a table by / j(, )
King and Harrison (7]. The present method was evaluated Z + )dS (Al)
countinS the horizontal members of the antenna as one struc-

, - ,,__ __"_... .. .. ...... ..__ _ _ _ _ _ _=
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represents a stationary formulation of the intrinsic Impedance, or
we assume that the dominant current distribution 1 has an
error of A!. The corresponding erros of q, Z, and 4 shall be
denoted Aq, A4, and A. Then 64 Ali + kqi) dSO. (AIo)

= AZ4 L I[ 9+)(i + A4 Furthermore
12

+ (j + A Xq + q)1 dS. (A2) 1(4A k + A;q,)dS

The boundary condition for the correct dominant current
distribution yields =f(yils= j(Aj" A,-a+ j )ds =0. (Al l)

ts [(WX + Vj) - 9] ds=. (M)$f + AFrom (AIO) and (Al I), (A9) reduces to

Since the dominant current distribution is the continuation j ( -

of the impressed current which is assumed to be unchanged, AZ/k =- J (a4,k • A, + at Aqj) dS. (A! 2)
A is zero at the terminal, and (A3) can be written in the form 4k1 S

f +4 Thus AZik is of second order.

(4 + il)d$ = 0. (M) 3) To prove that (34) is a stationary expression for the
S ifield-coupling impedances we treat the assembly of discon-

Using the relations nected structure elements like a single body. This means when
a current is impressed on terminal (bi ) we consider the dom-
inant current distribution 7k' together with the associated

ad• idS scatter currents 6i* which are distributed over all the elements
Sas a dominant current distribution of the system. The coupling
F f8 impedances between any two terminals can then be formu-

f4AqdS= JAjqdS (A5) lated like mutual-intrinsic impedances (A8),
S S

along with (A4) one obtains Z, (F) = i-
777 f vi.m' +A'

Ikl' ES"I

f .+ 4) dS ~ A + Aq) dSz 0. (A6)+ ')+(,'+

Thus from (AI), (A3), and (A6) • (qk' + 6q k)] dS. (A13)

Z i + A q)d. ( The error AZkmi produced by errors in the current distri-

AZZC I butions 1k' and 81. ~~' is obtained from (Al 12),
This means AZ is of the second order.

2) In the case of a mutual-intrinsic impedance AZk,. r#in t + 8

Ik1 (Aq. + Uqm )] ds, (A14)

both the dominant current distributions s' and 1 may have
errors Ak and Al . Thus and is of second order. This relation can also be derived from

(34), but only in a rather cumbersome manner.

AZj +(~ jA~kqi)'k 3i APPENDIX II

+ Ail + kkq,) + (ik AT/ +4jtAq,)j dS. Deintkfl' of (J9)
(A9) Consider a structure lemesit with several terminals and

let k and j be any two terminals where currents Ik and Iare
Because the correct dominant cumnt distributions satisfy the impressed. The corresponding dominant current and caay
boundary condition EX di = 0, distributions 1k, qk and 11, q1 produce the fields El andwhich satisfy the boundary conditions

j 4Xd!i) +ii)d in0 (AtS)
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El X d3 = - (JcQXA + Vii) X dS -. (Al 6) Multiplying (A23) with ik(i) and integrating over S1

Since the currents lt and 1, are tangential to the surfaces it f r)
follows from the boundary conditions f t

Qwlt+ Vet)" -dS = 0 (A17) Jl(f "

]A (k()GFV d~)dnl(•,1 +] N i dS 0. (AI 8) 47 = 8414'k(r1 1

f S0n ad-.0
N

Using the vector identity = J ' "i )A'(i) dS";

nwith ( oiftoioq (A9) Similarly it can be shown that

; ~and applying Gauss's theorem as in (8) of Section 11, (A17) f f

and (A18) can be written in the form f dkSqk'd$ - f 6qki idS~n . (A25)
i n=l "

-f [" ( ki'] d$ = kk The proof for (32) in the body of the paper follows the

s same outline as given above.

=jw (Akti k+kqk)dS (A20) APPENDIX IV

If a current is impressed on any terminal of a diakopted

structure there will be capacitive currents between the contact
-f ki])] dS = bkI/ areas of the disconnected elements which have not been con-

:s sidered in the derivation of the field coupling impedances.
f One might therefore conclude that the formulas are approx-

=w J ( jk 1 + 4 q) dS, (A21 ) imations which require the gaps between adjacent contact
S areas to be so large that capacitive currents are negligible.

The purpose of this appendix is to show that the expressions
where 'lkk is the potential at the terminal k due to ik and qk for Zkk"'(F) and Zk,m"'(F) are correct even if the gaps are
and $/k that at the terminal j due to 1k and qk. Of course ik infinitely small.
and qk are induced on the structure by Ik at the kth terminal Fig. 12 shows two structure elements: a cylindrical rod I
with all the other terminals open-circuited, i.e., with other and a disc 2 with the opposing contact areas o2 t and a, 2 If
impressed currents set equal to zero. For I k, (A2 1) trans- a current is impressed on the terminal (,) of the rod there will
forms into (A20). be a potential difference between 02 I and a, 2 ; which, in turn,

With produces a displacement current between these terminals. The

potential difference which is the line integral of the electric

*ik = Z/kit (A22) potential field between U21 and o12 is essentially determined
by the charges on the contact areas. If the gap is made smaller

one obtains from (A21) the expression for Zik given in (19). and smaller the potential difference approaches zero and the
- The expression in (20) is obtained if the potentials A& and 4 total current distribution becomes the dominant current

are expressed by (1) and (12), respectively, distribution of the interconnected elements. Because of the
equivalence of current and charge excitation displacement
currents at contact areas are equivalent to impressed currents.

APPENDIX III Thus the situation discussed above is the excitation of a
diakopted structure, not by one, but by three impressed cur-

Deriation of (23) rents. To produce excitation by one impressed current in

Let ik' be a dominant current distribution on the surface accordance with our theory, the displacement currents must
St and 6ikt" be the scatter current distribution on S" produced be compensated so that there is no current flux from the
by ik (n = 1, 2, ,N). contact area onto the surface S of the element (S by definition

does not contain the contact areas of the element). The mag-
f~nnitude of these compensating currents does not enter into the

) jiik'nQr)GQ, r')dS"(r). (A23) analysis because if the impressed currents of the eintopte
4r I n structure are identical with the junction currents of the inter-
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1 l electrically small configuration. lie coauthored and edited a book 0.
0' 01 01electromagnetic waveguides and resonators which baa been publishied in

,4...............-..-~, IGerman and English.
L-'L..,.........L...... .4Dr. Uoubeu received the Harry Diamont Memorial Award of the IRE for

IjJ C his basic contributions to the theory of surface waves and the invention of
IC 2 the surface wave transmission line in 1957. He was recipient of the 1961

John T. Bolljahn Award of the IRE Professional Group on Antennas and

Fig. 12. Compensation of capacitive currents at contact areas. Propagation for his paper on the theory of beam waveguides. Is 1972 be
received the Decoration for Meritorious Civilian Service of the De-
partment of the Army. He was a member of Sigma Xi and U.S.

connected structure there are no displacement currents be- Commission VI of URSI.

tween adjacent contact areas and the sum of all the corn- Dr. Goubu died on October 17, 1980.

pensating currents is zero.
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